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a b s t r a c t

We propose a theory for the structure of the interphase in polymeric nanocomposites based on the
freely-jointed chain near an impermeable spherical inclusion. The theory considers only the entropic
exclusion between a polymer and the inclusion. The radius of gyration of the polymer chain and its
distortion from spherical symmetry are perturbed strongly when the chain end is closer than 3Rg0 from
the surface of the sphere, where Rg0 is the unperturbed radius of gyration. Also, the maximum expansion
of the chain is bounded by (4/3)½, equal to a 15% increase. The shape of the polymer chain is elongated
tangentially to the surface when the chain end originates in the interphase, but elongates radially due to
entropic repulsion when the chain end is very close to the surface of the sphere. All the distortions of the
polymer conformation from ideality, and hence the spatial extent of the interphase, occur within the
depletion region associated with colloids. The model is used to explain recent experimental results
showing that polymer chain dimensions increase in the presence of nanoparticles. The model quanti-
tatively reproduces the observations at low filler loadings using no adjustable parameters, suggesting
that entropic arguments can describe the majority of the effect there.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Polymers in confined geometries such as nanocomposites and
thin films are receiving increased attention [1e7]. Nanocomposites
are an important class of materials that can display enhanced
thermomechanical and barrier properties [7e10]. Thin films show
altered glass transition temperatures [4], which has implications
for nanoimprint lithography and other electronic applications [11].
Mechanistic explanations for these effects from theoretical and
computational modeling are not yet satisfactory as there is a wide
range of conflicting predictions and empirical measurements.
There is discussion in the field about the interphase, also referred to
as the rigid amorphous fraction e a polymeric region surrounding
a nanoparticle, that has physical properties different from the bulk
polymer [6,7,9,10]. Our hypothesis is that if such an interphase
exists, it must have certain structural attributes. If the polymer
chains comprising the interphase have the same conformations as
the bulk polymer, then no change in properties should be expected,
assuming that no chains are tethered to the surface. Only when the
polymer conformation deviates from the bulk conformation could
one expect a variation in any property. Thus, it is important to
understand the structure of the interphase.
th).

All rights reserved.
Many efforts, both experimental and theoretical, have been
undertaken to shed light on the subject of the conformation of
a polymer chain in the neighborhood of a nanoparticle or a surface.
The presence of an obstacle is expected to perturb the dimensions
of a polymer chain. This perturbation may then alter some physical
properties of the material, such as radius of gyration, moduli, melt
viscosity or strain-at-break. This perturbed region might then be
associated with the interphase. A related problem comes from the
field of colloids, where it is known that, in the neighborhood of an
individual colloid particle, there is a region surrounding the particle
that has lower polymer segment density [12e16]. Understanding it
is critical for stabilization of colloids. Most work focuses on the
extent of the depletion region, but not the conformation of the
polymer chains within it.

Awiderangeof theoreticalmodels andcomputational simulations
havebeenapplied tounderstandingpolymerstructureandproperties
of nanocomposites. Although a complete literature review is outside
the scope of this article, to date there is no unifying theme that
consistently explains the statistical conformations and orientation of
polymer chains in nanocomposites e whether or not any unusual
features exist. There is a considerable literature investigating lattice
chain-inclusion systems. For example, Ozmusul [17] developed
a cubic latticeMonte Carlo simulationwherein self-avoiding polymer
beads have fluctuating bond lengths and attractive square well
interactions between beadebead and bead-filler sites. Interestingly,
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the presence of up to 27 vol% small filler particles does not affect the
average end-to-enddistance statistics relative to simulationswithout
filler particles. From this studywewould conclude that nanoparticles
do not affect equilibrium melt chain conformations. More recently
Termonia [18] has provided a cubic lattice Monte Carlo simulation of
self-avoiding polymer beads having constant bond lengths but no
other beadebead or bead-filler interactions. Having considered the
presence of up to 20 vol% small filler particles, these simulations
indicate the presence of a thin, interfacial regionwithin which poly-
mer segments orient tangentially to the filler particles. This orienta-
tion would not be present without the presence of filler particles, so
from this study we would conclude that nanoparticles do affect
equilibriummelt chain conformations.

There are also seemingly contradictory results from off-lattice
simulations. Vacatello [19e22] provides Monte Carlo simulations of
realistically-dense linear chains and comparably sized filler particles
present up to 36 vol%. The chains comprise beads with fixed sepa-
ration interacting with immediately neighboring beads by
a quadratic bending potential which is minimized when the neigh-
boring segments are perfectly straight. Beads interact with other
beads and filler particles with truncated 6-12 Lennard-Jones
potentials, which provide substantial attraction between beads and
filler particles. Within a few bead shells of the filler particles, beads
develop a very thin liquid-like radial distribution function structure
with orientation tangential to the filler. Although the characteristic
ratio of the mean-square end-to-end distance to the mean-square
radius of gyration conforms to unperturbed Gaussian values, the
mean squared end-to-end distance in the presence of filler is always
smaller than in the unperturbed melt. This is observed even when
the filler particles are smaller than the polymer. In contrast Sharaf,
Mark and collaborators [23e25] use an off-lattice Monte Carlo
methodology for phantom polymer chains described by segments
conforming to rotational isomeric state torsion probabilities and are
excluded by spherical filler nanoparticles. These simulations show
significant departures from unperturbed, Gaussian conformational
statistics. Chains are extended relative to unfilled systems when
encompassing smaller filler particles, while chains are compressed
when ensconsing larger filler particles. Starr and coworkers [26]
simulate the molecular dynamics of relatively short, linear FENE
bead-spring chains with both attractive and non-attractive trun-
cated Lennard-Jones potentials for beadebead and bead-filler
particles. Here the filler particles are fixed into icosahedral inclu-
sions. The flat surfaces provide a preferential orientation for the
polymers, and this effect persists for a distance of roughly one chain
radius of gyration. Moreover as chains approach the particle surface
the overall radius of gyration increases about 25% while the
component perpendicular to the surface decreases more than
a factor of 2 for both attractive and non-attractive systems. However
the chains retain Gaussian conformational statistics near the nano-
particle surface since the mean-square end-to-end distance is about
six times the mean-square radius of gyration, even though the
monomer probability distribution function is anisotropic. Most
recently, Frischknecht and coworkers applied a self-consistent
polymer reference site model to a nanocomposite system and
demonstrated increasing chain expansion as a function of particle
loading [27]. The polymers are treated as chains of spheres, the
particles are spheres, and the total packing fraction is 45%. Siteesite
interactions are described by Lennard-Jones potentials, where the
monomeremonomer and particleeparticle interactions are purely
repulsivewhilemonomereparticle interactions are purely attractive.
The chain expansion ismost simply described as due to the attractive
interactions between the monomers and the particles; the nano-
particles act as a good solvent. With suitable adjustable scaling, the
theory is able to fit the data of Tuteja [28]. However, the approach
does not spatially map the orientation and deformation of polymer
chains as function of distance of the chain from the surface of the
nanoparticle.

Experimentally, measurements of polymer chain dimensions in
nanocomposites remains elusive because it is difficult to produce
samples with sufficient dispersion quality. Sen’s work [29] on
colloidal silica loaded polystyrene showed no deviation from
Gaussian statistics, but their dispersions were not ideal at high
loadings. Jones [30,31] results in thin polystyrene films show that
chain dimensions remain Gaussian in the plane of the film. No
conclusion could be made about the dimensions perpendicular to
the conformations within the confining planes. Nakatani [32,33]
showed that chain dimensions in PDMS increased with filler
loading, and the magnitude of the effect depended on the molec-
ular weight of the polymer. Recently, Tuteja [28] showed that
polystyrene chain dimensions increased in the presence of cross-
linked polystyrene-like nanoparticles. We believe their work is the
most rigorous to date, but there is currently no theory that can be
applied to predict their experimental observables.

With all of this accumulated effort as a backdrop, it is apparent
that there is still a need for a generalized theory of the structure of
the interphase. Our work intends to add to the body of literature
by providing a treatment of a freely-jointed, phantom chain
interphase by using the analytic Green’s function for a random
walk around a sphere. This solution considers entropic exclusion,
without energetic interactions between the particle and the
polymer. It is the simplest standard treatment for a polymer chain
subject to a constraint with this geometry, but has not yet been
considered in the literature. The need for this treatment has been
identified [25] because the results provide limiting behavior of
conformational statistics for finite chains that are prohibitively
time consuming to model with computer simulation. Furthermore
this model provides limiting behavior to test the more complex
Monte Carlo and molecular dynamics simulations whose validity
requires highly sophisticated phase space sampling techniques.
From this analysis, the radius of gyration, Rg, is calculated, along
with the distortion, described by a conformation tensor [34]. We
will show that these results compare favorably to the experi-
mental results of Tuteja at low volume concentrations, where it is
valid to consider the chain as a random walk around a single
sphere, but fail at the highest volume loading [28], where the
chain would need to be modeled as a randomwalk in the presence
of several spheres. Polymer segment densities and depletion
widths are also calculated, and those results compare well to
similar theories from the colloid literature [13].
2. Theory

For a random walk in the vicinity of an impenetrable sphere of
radius a, the Green’s function satisfies the equation: 
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sphere j R!j ¼ R ¼ a. The solution, given by Carslaw and Jaeger
[35], is:
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Cnþ1=2ðzÞ ¼ Jnþ1=2ðzÞYnþ1=2ðuaÞ � Ynþ1=2ðzÞJnþ1=2ðuaÞ (3a)
In this expression, J is the Bessel’s function of the first kind, Y is
the Bessel’s function of the second kind, P is the Legendre poly-
nomial of argument m¼ cos4, where 4 is the angle between the
vectors R

!
and R0

!
, and Rg0

2 ¼Nl2/6 is the radius of gyration of an
unperturbed Gaussian chain. The center of the sphere is the center
of the coordinate system.

Using b ¼ j R!j � a to represent the magnitude of the distance
from the chain origin to the surface of the nanoparticle, equation
(3) was integrated over all space to arrive at this closed form:
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This integral is used to normalize the integrals of the moments,
to be calculated below, and was first mentioned by Doi [36]. Using
this expression for the normalization integral, we can calculate the
total number of configurations in the system:

U ¼
ZZ

G
�*R;*R0;N; a� d3*R d3*R0 (5)

So, compared to a Gaussian chain, the chain near the nano-
particle has its number of configurations reduced by (see
Appendix B):
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U0 is the number of configurations available to the unperturbed
Gaussian chain. This is also known as the depleted volume in the
literature, and has been previously derived by others by different
methods [37e39].

The expression for the mean-squared, end-to-end distance
hR2eei ¼ hð R!� R0

!Þ2i, was evaluated from the integral
representation:
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Note that the chain dimensions vary in space relative to the
location of the sphere, and its size. The problem is greatly simplified
by recognizing a unique property of Legendre polynomials. When
integratingGwith respect to the polar angle f, only a single Legendre
polynomial will integrate to a nonzero value, e.g., in the case of the
normalization integral, only the n¼ 0 term is not zero after inte-
gration. Thus, while it is necessary to evaluate many terms to
describe the full shape of the Green’s function, only a few terms are
needed to evaluate the statistical averages. After equation (7) is split
into its three component integrals,we find that thefirst two integrals
can be expressed analytically because of the simple forms for J½ and
Y½, but the third integral needs to be evaluated numerically.

Using the expression for hR2eei, we calculate the radius of gyra-
tion, Rg2, with the relationship (see Appendix C) [40]:
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The contour plot for the scaled radius of gyration, Rg/Rg0, is pre-
sented in Fig. 1, where the variables a¼ a/2Rg0 and b¼ b/2Rg0 have
been introduced to scale the results. We see that when the particle
becomes vanishingly small, a/ 0, Gaussian chain statistics are
recovered. When the particle becomes very large compared to the
size of the polymer, then hR2eei and Rg match what one would expect
from the solution for a random walk near a wall (see Appendix A).
For that limiting case, the expression for the mean-squared end-
to-end distance (normalized to the unperturbed value) is:
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While other properties derived from this form of the Green’s
function for the wall match those in the literature (such as segment
density, addressed below), this expression for Ree,W has not, to our
knowledge, previously appeared in the literature. Between these
two limits, we observe the smooth variation of Rg as the radius of
the sphere changes. For the large a case, there is a broad, shallow
minimum of Rg/Rg0¼ 0.98 when b¼ 0.9. It equals one when
b¼ 0.50, and then continues to Rg/Rg0/ (4/3)½¼ 1.15 as b/ 0.
Thus, when the chain origin is very near the surface of the sphere,
b<< 1, entropic repulsion causes the chain to expand. As
a decreases, we see that the chain becomes less compressed at
b¼ 0.9, and there is less expansion as b/ 0. The location of the
point where Rg is unperturbed stays constant until a< 0.5, when it
begins to move closer to the surface of the sphere.

To calculate the shape of the polymer chain in the presence of
the sphere, we calculate the projection of Ree in the radial direction,
and in the plane perpendicular to it. This is accomplished using
a conformation tensor [34], which we calculate as follows:
Ci;jð*R;N; aÞ ¼ 1
2R2go
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(10)

From this, we define D¼ Ct e Ck as a proxy for the departure of
the statistically averaged chain from spherical symmetry (the
perpendicular direction is the radial direction, and the parallel
direction is in the plane parallel to the tangent to the surface). For



Fig. 1. Normalized radius of gyration for a polymer chain near a sphere. a is the scaled
particle radius, and b is the scaled distance from the chain origin to the surface.
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Ct, we use ð*R�*R0Þið
*R�*R0Þj ¼ R2 þ R02 � 2RR0cosf� R02sin2f,

while for Ck, we use ð*R�*R0Þið
*R�*R0Þj ¼ R02sin2f. This accounts

for the fact that the end-to-end distance needs to be calculated
with the origin of the coordinate system at the center of the sphere.
We call D the distortion, just for discussion purposes, and it is
plotted in Fig. 2. As a/0, Gaussian statistics are recovered, as
expected. As a increases, there is a thumb-shaped region in the
contour plot where the chain is flattened tangentially to the
surface, with the most orientation occurring when b w 0.6e1.0. In
addition, for small values of b and large values of a, we observe that
the chain conformation is elongated away from the surface due to
entropic repulsion. It is interesting that, for this geometry, there is
a location where the tangential flattening is balanced by the
Fig. 2. Distortion in a polymer chain near a sphere. a is the scaled particle radius, and
b is the scaled distance from the chain origin to the surface.
entropic repulsion to result in a chain that has D¼ 0, even though
the Green’s function for this condition is not spherically symmetric.
For large a, the distortion of the wall case is recovered:

DW ¼ �4b2erfcðbÞ
erf ðbÞ þ 2be�b

2ffiffiffi
p

p
erf ðbÞ (11)

Thus, there is a smooth transition between the wall case and the
nanoparticle case. All of the deviations from Gaussian behavior
occur when b < 3/2. This predicts that the interphase is completely
bounded 3 Rg0 from the surface.

The segment density, c, for the polymer chain is calculated using
[40]:

c
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It is the probability of finding a segment at a certain position r!,
given that the polymer chain starts at R

!
and ends at R0

!
. The next

level of integration for this function is to inquire what the segment
density is at any location if the chain end is allowed to range over all
locations. This is known as the integrated segment density, H.
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The integral over R0
!
is readily evaluated as the normalization

constant for the Green’s function, albeit for an altered chain length.
Finally, if H is integrated over all possible origins of the chain,
relative to the surface of the sphere, one arrives at the polymer
segment density, F.

Fð*r;N; aÞ ¼
Z

Hð*r;*R;N; aÞd3*R (14)

The integration as written in equation (14) results in a non-
uniform density of polymer segments surrounding the obstacle.

The polymer segment density around a sphere is thus given by:
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Following ref. [13], we derive the depletionwidth d as a function
of the radius of the sphere by solving the equation:

4p
3

�
ðaþ dðN; aÞÞ3�a3

�
¼ 4p

ZN
a

ð1� Fðr;N; aÞÞr2dr (16)

The depletion width represents the thickness of a shell around
the particle that balances the reduction in polymer segment
density. We present the scaled depletion width d/2Rg0 in Fig. 3. The
depletion width is zero as the nanoparticle radius tends to zero. It
increases rapidly, achieving a very slight maximum of 0.353 in the
curve at a¼ 1.14 prior to leveling off at a value of 0.347. This implies
that the depletion width w0.7 Rg0 for large a. This result is
consistent with Fig. 7 from ref. [13], but comes to it from a different



Fig. 3. Scaled depletion, d/2Rg0, width around a sphere.

Table 1
Calculated values of a parameter.

Particle
MW (kD)

Matrix
MW (kD)

Particle Radius
(nm)

Matrix Rg

(nm)
a

25 65 2.0 5.7 0.18
52 65 2.7 5.7 0.24
135 65 3.6 5.7 0.32
25 235 2.0 11.4 0.088
52 235 2.7 11.4 0.12
135 235 3.6 11.4 0.16
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functional form. As the radius of the sphere becomes large, equa-
tion (16) becomes:

FðyÞ ¼ 4p2

9N3
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This integral is well-approximated by the usual expression
F(y)¼ tanh2(p½$y), where y is the distance from the wall scaled
by 2Rg0, and serves as another form for the solution to the
problem of polymer segment density near a wall [13]. It is
interesting to note the comparison between F and Rg. It is only
when F deviates from unity that Rg deviates from unity. Thus, the
distortions in the polymer conformation are occurring within the
depletion region [41].

Alternatively, one can inquire what distribution of chain ends
would result in a polymer segment density equal to unity for all
positions. This is of concern because in a polymer melt, there is
uniform segment density everywhere except within a distance that
is atomistically close to the particle. This requires that chain ends be
concentrated near the particle’s surface. Mathematically, we
inquire as to what chain end distribution function j solves the
integral equation:

1 ¼
Z

Hð*r;*R;N; aÞjð*R;N; aÞd3*R (18)

Generally, these integral equations are extremely difficult to
solve. However, in this case, the solution is quite simple. We find
that:

jð*R;N; aÞ ¼ 1

Fð*R;N; aÞ
¼ 1

Fðb;N; aÞ ¼ 1
Fða; bÞ (19)

is a solution to equation (18). This solution creates no depletion of
polymer segment density at the surface of the sphere. This
expression is equation (15) with a different variable for the radial
distance. A depletion width accounting for the effects of screening
due to polymer compressibility can be obtained by reducing the
magnitude of F at small values of R.
3. Discussion

In this work, we describe the random walk probability distri-
bution function perturbed by a spherical obstacle using the
complete analytic Green’s function. This approach has not been
used previously by others working in the nanocomposite field. In
addition, previous work using Green’s functions has neglected to
calculate the Rg of the polymer chain. It is this calculation that can
model experimental scattering data. We have done this analysis for
confined thin films and nanotubes [42], also.

Tuteja’s characterization of linear polystyrene chains with
polystyrene nanoparticle inclusions [28] provides interesting data
to interpret in terms of the current work. That system should have
minimal enthalpic contributions, and so should be well-approxi-
mated by our entropic theory. To do the comparison, we determine
a value for a, given the measured radii of gyration of the polymer
and the nanoparticle; see Table 1.

Next, we use the expression for surface-to-surface interparticle
distance [43] to calculate an effective limiting value for the
maximum distance of any chain origin from the surface of the
nanoparticle.

blim ¼ a

 �
fmax
f

�1=3

�1

!
(20)

We choose to use fmax¼ 2/p for random dense packing [44].
With this, we find that blim/a¼ 3.00, 1.34, and 0.85; for 1, 5, and 10
volume percent loadings, respectively. Notice in particular that
blim/a< 1 at 10 v% loading. The average value, hRg=Rg0i, is then
computed for this value of a, within the range 0< b< blim, using the
expression:

*
Rg
Rg0

+
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Zblim

0

Rgða;bÞ
Fða; bÞ ðaþ bÞ2db

Zblim

0

1
Fða; bÞðaþ bÞ2db

(21)

This is a volume average around the spherical inclusion. The
kernel is the radius of gyration for a chain originating the scaled
distance b from the surface, multiplied by the relative number of
chain ends at that distance, and then multiplied by the differential
volume of the shell. We have incorporated the chain end distri-
bution function that the model predicts, F(a,b), following equations
(18) and (19). The (aþ b)2 term accounts for the volume of the shell
around the sphere, akin to the 4pr2 term used in integrals per-
formed in the spherical coordinate system. In this manner, hRg=Rg0i
can be predicted for all of Tuteja’s experimental conditions. The
results are shown in Fig. 4. Note that this is not a fit to the data.
Rather, it is a comparison. There are no adjustable parameters in the
model. At 1 v% and 5 v%, the agreement is within the error bars for
most of the data points.
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Fig. 4. Predicted values for the averaged, normalized radius of gyration as a function of
loading, compared with the experimental data (ref. [33]).
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At 10 v%, we clearly underestimate the measured values. While
the data continues to increase, our theory flattens out. The source of
this discrepancy lies in the fact that the theory is valid for a chain
around a single particle. As the loading increases, the polymer chain
is bounded by a space created bymultiple particles, and the Green’s
function presented in equation (3) is no longer accurate; the situ-
ation is no longer a random walk around a single sphere. For
reference, the interparticle distance is <0.5 Rg0 at 10 v% for these
samples. Thus, a single obstacle is no longer the appropriate model.
This suggests that our model is not valid when blim/a< 1. The
experimental results are showing that at high loadings, these
polymer chains are not being confined to the interstice created by
surrounding particles. Rather, they must be threading through
several interstices, to be in accord with the experimental results.
Another interpretation is that, at low loadings, the polymer chains
expand when they encompass a single nanoparticle. At higher
loadings, the chains encompass multiple particles, and the effects
of expansion are simply additive.

Within the present model, we predict that hRg=Rg0i could
increase up to amaximumvalueof (4/3)½¼ 1.15 if all chain endswere
near the surface of the particle; this is close to the maximum
expansion observed in the data. Thus it is possible to surmise that, at
high volume loadings, there is more and more segregation of chain
ends to the particle’s surface. However, there is no evidence to
support this, and it seems unlikely. Regardless, the fact that a single
analytic theory can be applied to some of the situations in the data set
is encouraging. It also suggests that, in this system, entropic effects
can account for most of the observed increase in Rg at low loadings.

In our present analysis, we omitted the excluded volume
parameter needed tomodel a self-avoidingwalk. To include it in the
Hamiltonian would result in a nonlinear term in equation (1), and
preclude an analytic solution for this geometry. The exclusion of
this term also implies that the model represents an incompressible
polymer. This won’t significantly affect the Rg and conformation
analysis because, in a polymer melt, the scaling for Rg w N½, which
matches the result if excluded volume is omitted. However, it does
have an effect on the segment density prediction. When there is
a density fluctuation in a bulk material, the compressibility
provides a force that smoothes out the variation. In the work done
byWu [45], they demonstrate that the inclusion of this term for the
wall case results in a constant polymer segment density for
distances greater than the screening length. The constant polymer
segment density is achieved by a non-uniform chain end density. In
our work, the use of the inverse of the polymer segment density as
the chain end distribution function results in the chain end density
being unbounded at the surface, but the prediction that the chain
end density increases monotonically as the chain end approaches
the surface is physically reasonable and observed in simulations
[18]. Eliminating this term from equation (21), and thereby
assuming a constant chain end distribution function, results in
a decrease of a few percent in hRg=Rg0i, i.e., values ofw1.07 become
w1.04. The shape of the curves are unchanged. Finally, our bulk
segment density prediction is realistic for experimental polymer
melts, and it grounds our results to the existing body of literature
regarding depletion width in colloids [13,41].

It is difficult to compare our theory to others, since different
properties are presented. We can compare our results with that of
Starr [26]. Studying that work, we deduce that their calculation was
performed with a nanoparticle and polymer chain size such that the
value of a w 1. For the case of non-attractive interactions, they
calculated that Rg increased bya factor ofw1.10 as the center-of-mass
of the polymer chain approached the surface of the sphere. In our
calculations, as the chain end approaches the surface of the sphere,Rg
increases by factor of 1.14 when a w1, which is within Starr’s error
bars. Theminimum in Rg thatwe calculate for thewall case at bw1 is
barely visible when a w1, which also agrees with their calculations.
We can also compare our results to those presented in Fig. 1 of
Frischknecht [27]. Below 5 v%, there is good agreement between the
two methods. Unfortunately, we cannot compare to Termonia’s [18]
or Vacatello’s [20] calculations because their work was done at
high volume loadings,where our theory is not applicable. All theories
predict a flattening of the chain against the particle.

Our analysis does not contradict other experimentalwork, either.
In the case of Sen’s work [29], the aggregation that they observe
effectively increases the value of a that goes into our model.
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Performing a volume average in that case results in very little
increase in Rg becausemost chains are not near the surface of a filler
particle. Thework by Jones on thinfilms [30] can be explained by the
observation detailed in the Appendix, equation (A.5), which shows
that the Ree in the plane of the filmwould retain its Gaussian value,
regardless of the position of the chain end from the wall. For Naka-
tani’s data [32], meaningful comparisons are not possible because
their data is acquired at very high volume loadings.

To account explicitly for enthalpic interactions in this model
would be difficult. However, one could posit that an attractive
enthalpic interaction would create multiple interactions between
a chain and the particle. This could then be modeled with Green’s
functions as a statistical distribution of loops, trains, and tails for
a chain near the surface. Still, the simplest method to model
enthalpy is to consider the polymer-at-a-wall situation, and
provide a nonzero monomer density at the wall by making the
source strength greater than the sink strength. This will be inves-
tigated inmore detail in the future.We predict that this can counter
the entropic repulsion, making the polymer conformation more
tangential to the surface, and muting the increase in Rg. Another
consequence of enthalpic interactions could be observed in poly-
disperse polymer melts. A polymer chain with higher molecular
weight may be more likely to be adsorbed to a particle than
a shorter chain. This could result in a segregation of longer chains to
the surface region, which could affect the melt viscosity.

Finally, it is worth noting what this theory predicts about the
entanglement density of polymeric nanocomposites. The discussion
on this subject relates the volume pervaded by the polymer chain to
the entanglement density; the larger the spatial extent of the chain,
the greater the entanglement density [46,47]. Since our model
predicts that Rg increases for chains near spheres, we would posit
that the entanglement density is increased in the region close to the
spheres. If chain ends segregated to the sphere’s surface, it would
reinforce this supposition. Also, we see from Fig. 1 that, in some
cases, there is a reduction in Rg near the sphere, and this would
correspond to a reduction in the entanglement density. The polymer
would form a shell around the sphere of thickness w 2 Rg0, within
which the entanglement density would be higher than the bulk,
while at the surface of the shell, the entanglement density is slightly
less than the bulk value. This may imply the existence of a boundary
layer around each inclusion,which could affect viscosity in themelt.
4. Conclusions

We have described the size and shape of polymer chains in
the vicinity of a sphere, and demonstrated the smooth transition
between a flat wall and a sphere. This entropic theory provides
an analytical extension to the polymer-at-a-wall theories that has
not been presented in the literature to date. We have shown that
the radius of gyration of the polymer chain contracts as the chain
end approaches the obstacle, and then expands upon further
approach. The shape of the polymer chain is flattened tangen-
tially to the surface at intermediate distances, and then extends
radially due to entropic repulsion at close distances. Direct
comparison to data shows that the model can account for the
observed increases in Rg of polymer chains in low-loaded nano-
composites as measured by neutron scattering. As such, the
theory is a useful model for the structure of the interphase in
polymeric nanocomposites.
Appendix A. Random walk near a wall

This problem has been considered previously in the literature
[13,37,45,48]. Here we briefly state the results relevant to this
work. The Green’s function for a random walk near an impene-
trable wall is:

Gðr; z;N; bÞ ¼ exp

 
� r2

4R2g0

!(
exp

 
� z2

4R2g0

!

� exp

 
� ðzþ 2bÞ2

4R2g0
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The z-direction is perpendicular to the wall, and the r-direction
is parallel to it; cylindrical symmetry is used. The origin of the chain
is at the origin of the coordinate system. Thus, the wall is located at
z¼�b. The relevant integral averages are:
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In these expression, b¼ b/(2Rg0), as in the main text. From this,
we derive:D
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The mean-squared end-to-end distance normalized to that of
a Gaussian chain is then:
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The radius of gyration is calculated:

R2g ¼ 1
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s02 ¼ jn�mjl2
3

(A.10)

Where b0 ¼ b/(2½s0). The elements of the conformation tensor are:

Czz ¼ 1� 4b2erfcðbÞ
erf ðbÞ þ 2be�b

2ffiffiffi
p

p
erf ðbÞ (A.11)

Cxx ¼ Cyy ¼ Crr=2 ¼ 1 (A.12)
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When combined, they yield equation (11) of the main text.
Furthermore, when equation (A.1) is used as the input to equations
(2)e(14) of the main text, equation (17) results.

Appendix B. Derivation of equation (6)

To derive equation (6) from equation (5), one first performs the
integration over *R0 in equation (5), resulting in the normalization
integral equation (4). This is shown in equation (B.1), which
explicitly includes the limits of the integral, from the surface of the
particle to infinity. In this expression, the location of the chain end
from the surface of the sphere, defined as b in the text, becomes the
variable of integration, and is renamed r.

U ¼
Z Z
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For the Gaussian case,
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Constructing the difference between the two gives:
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Themiddle two integrals cancel identically, while the remaining
integrals simplify to equation (6) of the main text [49].

Appendix C. Calculating Rg
2

Equation (8) is the strict definition presented by Doi and
Edwards [40]. It expresses Rg2 in terms of the hR2eei between all pairs
of monomers in the chain. Equation (7) provides hR2eei for any value
of N, the number of monomers. Recall equation (8):

R2gð
*
R;N; aÞ ¼ 1

2N2

XN
n¼1

XN
m¼1

D
ðRn � RmÞ2

E
(C.1)

Next, realize that in equation (7), hR2eei is a function of the distance
between the monomers, with the location of one monomer as
a separate parameter R, or equivalently, b. Now, in equation (C.1),
the term in brackets on the right-hand-side is the statistically
averaged end-to-end distance squared between two monomers of
a chain that is (n�m) units long, as opposed to N units long for the
whole chain. Equation (7) can also be used to calculate
hR2eeðb; ðn�mÞ; aÞi. Thus, the terms in the summation can be indi-
vidually calculated. Since these terms only depend on k¼ (n�m),
the double summation can be reduced to a single summation. In the
double summation, there are no terms with N steps, 1 term with
N-1 steps, 2 terms with N-2 steps, etc., until one reaches N-2 terms
with two steps, and N-1 terms with one step. So the double sum is
commuted to a single sum. In this manner, equation (C.1) is
transformed to:
R2gðb;N; aÞ ¼ 1
2

XN�1
ðN � kÞ	Ree�a0; b0�
 (C.2)
N
k¼1

Where a0 ¼ a=ð
ffiffiffi
2

p
sÞ, b0 ¼ b=ð

ffiffiffi
2

p
sÞ, and s2 ¼ kl2=3. In execution,

hR2eeiwas calculated for the entire range of a’ and b’ of interest to the
problem, then the summation was computed.
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